skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khosla, Kanav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Microinjection is a technique used for transgenesis, mutagenesis, cell labeling, cryopreservation, and in vitro fertilization in multiple single and multicellular organisms. Microinjection requires specialized skills and involves rate-limiting and labor-intensive preparatory steps. Here, we constructed a machine-vision guided generalized robot that fully automates the process of microinjection in fruit fly (Drosophila melanogaster) and zebrafish (Danio rerio) embryos. The robot uses machine learning models trained to detect embryos in images of agar plates and identify specific anatomical locations within each embryo in 3D space using dual view microscopes. The robot then serially performs a microinjection in each detected embryo. We constructed and used three such robots to automatically microinject tens of thousands of Drosophila and zebrafish embryos. We systematically optimized robotic microinjection for each species and performed routine transgenesis with proficiency comparable to highly skilled human practitioners while achieving up to 4× increases in microinjection throughput in Drosophila. The robot was utilized to microinject pools of over 20,000 uniquely barcoded plasmids into 1,713 embryos in 2 days to rapidly generate more than 400 unique transgenic Drosophila lines. This experiment enabled a novel measurement of the number of independent germline integration events per successfully injected embryo. Finally, we showed that robotic microinjection of cryoprotective agents in zebrafish embryos significantly improves vitrification rates and survival of cryopreserved embryos post-thaw as compared to manual microinjection. We anticipate that the robot can be used to carry out microinjection for genome-wide manipulation and cryopreservation at scale in a wide range of organisms. 
    more » « less
  2. Titanium nitride (TiN) is presented as an alternative plasmonic nanomaterial to the commonly used gold (Au) for its potential use in laser rewarming of cryopreserved biomaterials. The rewarming of vitrified, glass like state, cryopreserved biomaterials is a delicate process as potential ice formation leads to mechanical stress and cracking on a macroscale, and damage to cell walls and DNA on a microscale, ultimately leading to the destruction of the biomaterial. The use of plasmonic nanomaterials dispersed in cryoprotective agent solutions to rapidly convert optical radiation into heat, generally supplied by a focused laser beam, proposes a novel approach to overcome this difficulty. This study focuses on the performance of TiN nanoparticles (NPs), since they present high thermal stability and are inexpensive compared to Au. To uniformly warm up the nanomaterial solutions, a beam splitting laser system was developed to heat samples from multiple sides with equal beam energy distribution. In addition, uniform laser warming requires equal distribution of absorption and scattering properties in the nanomaterials. Preliminary results demonstrated higher absorption but less scattering in TiN NPs than Au nanorods (GNRs). This led to the development of TiN clusters, synthetized by nanoparticle agglomeration, to increase the scattering cross-section of the material. Overall, this study analyzed the heating rate, thermal efficiency, and heating uniformity of TiN NPs and clusters in comparison to GNRs at different solution concentrations. TiN NPs and clusters demonstrated higher heating rates and solution temperatures, while only clusters led to a significantly improved uniformity in heating. These results highlight a promising alternative plasmonic nanomaterial to rewarm cryopreserved biological systems in the future. 
    more » « less
  3. Abstract Devising an approach to deterministically position organisms can impact various fields such as bioimaging, cybernetics, cryopreservation, and organism‐integrated devices. This requires continuously assessing the locations of randomly distributed organisms to collect and transfer them to target spaces without harm. Here, an aspiration‐assisted adaptive printing system is developed that tracks, harvests, and relocates living and moving organisms on target spaces via a pick‐and‐place mechanism that continuously adapts to updated visual and spatial information about the organisms and target spaces. These adaptive printing strategies successfully positioned a single static organism, multiple organisms in droplets, and a single moving organism on target spaces. Their capabilities are exemplified by printing vitrification‐ready organisms in cryoprotectant droplets, sorting live organisms from dead ones, positioning organisms on curved surfaces, organizing organism‐powered displays, and integrating organisms with materials and devices in customizable shapes. These printing strategies can ultimately lead to autonomous biomanufacturing methods to evaluate and assemble organisms for a variety of single and multi‐organism‐based applications. 
    more » « less
  4. Abstract Coral reefs are threatened by anthropogenic climate change, which causes ocean acidification and warming that can result in coral death and the loss of genetic diversity on reefs around the world. Global efforts to secure the genetics of threatened populations using cryopreservation and biobanking are underway but are limited to coral sperm and larvae, available only during brief annual spawning events. Methods to cryopreserve adult coral tissues to enable biobanking activities year‐round are urgently needed, but are challenging due to the presence of a calcium carbonate skeleton and algal symbionts within the tissues, and chill sensitivity. In this study, vitrification and laser nanowarming permitted successful recovery of adult coral tissues in a novel sample type, the single‐polyp microfragment. Fluorescence and confocal microscopy shows clearly defined green fluorescent protein auto‐fluorescence around the polyp mouth post‐warming, with an overall survival rate of 39.7 ± 7.4% at 24 h post‐warming and 23.3 ± 9.7% at 1 month, but relatively few algal symbionts are present in the tissues, indicating poor survival of these cells. These proof‐of‐concept results provide a basis for continued research and development of a field‐ready protocol for cryopreservation of adult coral tissues, which will be essential to prevent extinctions and support reef restoration. 
    more » « less